bycj.net
当前位置:首页 >> 理解 快速傅里叶变换 >>

理解 快速傅里叶变换

MATLAB傅里叶变换: 傅立叶变换的分类:傅立叶级数:将周期性连续函数变换为离散频率点上的函数(连续)傅立叶变换:将连续函数变换为连续频率的函数离散时间傅立叶变换:将离散函数变换为连续频率的函数离散傅立叶变换:将有限

计算离散傅里叶变换的一种快速算法,简称fft.快速傅里叶变换是1965年由j.w.库利和t.w.图基提出的.采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数n越多,fft算法计算量的节省就越显著.

Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等.为方便起见,本文统一写作“傅里叶变换”.傅立叶变换是一种分析信号的方法

1、傅里叶变换公式 公式描述:公式中F(ω)为f(t)的像函数,f(t)为F(ω)的像原函数.2、傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合.在不同的研究领域,傅立叶变换具有多种

傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点.如减速机故障时,通过傅里叶变换做频谱分析,根据各级齿轮转速、齿数与杂音频谱中振幅大的对比,可以快速判断哪级齿轮损伤.

FFT的基本思想是把原始的N点序列,依次分解成一系列的短序列.充分利用DFT计算式中指数因子 所具有的对称性质和周期性质,进而求出这些短序列相应的DFT并进行适当组合,达到删除重复计算,减少乘法运算和简化结构的目的.此后,在这思想基础上又开发了高基和分裂基等快速算法,随着数字技术的高速发展,1976年出现建立在数论和多项式理论基础上的维诺格勒傅里叶变换算法(WFTA)和素因子傅里叶变换算法.它们的共同特点是,当N是素数时,可以将DFT算转化为求循环卷积,从而更进一步减少乘法次数,提高速度.

快速傅氏变换(FFT)是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的.它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变

计算离散傅里叶变换的一种快速算法,简称FFT.快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的.采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著.

您对于傅里叶变换恐怕并不十分理解\x0d傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式既然是无

1. (1)对于周期和非周期信号都成立. 周期信号的频谱只在离散的点非零,且幅值无穷大,所以可以看作一系列sin或cos信号的叠加,可以用傅里叶级数表示; 非周期信号的频谱是连续的,幅值有限,因此不能用傅里叶级数表示. (2)不晓得什么是"频谱密度"频谱不就是横坐标f,纵坐标幅值的函数么.傅里叶变换就是用来求这个的. 2. 求解傅里叶级数还是相当于正变换,即把时域或空间域的信号表示在频域中. 傅里叶级数适合处理周期信号.

网站首页 | 网站地图
All rights reserved Powered by www.bycj.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com